Bases: colour.appearance.hunt.Hunt_InductionFactors
Hunt colour appearance model induction factors.
| Parameters: |
|
|---|
Bases: colour.appearance.hunt.Hunt_Specification
Defines the Hunt colour appearance model specification.
This specification has field names consistent with the remaining colour appearance models in colour.appearance but diverge from Fairchild (2013) reference.
| Parameters: |
|
|---|
Computes the Hunt colour appearance model correlates.
| Parameters: |
|
|---|
Warning
The input domain of that definition is non standard!
Notes
| Returns: | Hunt colour appearance model specification. |
|---|---|
| Return type: | Hunt_Specification |
| Raises: | ValueError – If an illegal arguments combination is specified. |
Examples
>>> XYZ = np.array([19.01, 20.00, 21.78])
>>> XYZ_w = np.array([95.05, 100.00, 108.88])
>>> XYZ_b = np.array([95.05, 100.00, 108.88])
>>> L_A = 318.31
>>> surround = HUNT_VIEWING_CONDITIONS['Normal Scenes']
>>> CCT_w = 6504.0
>>> XYZ_to_Hunt(
... XYZ, XYZ_w, XYZ_b, L_A, surround, CCT_w=CCT_w)
Hunt_Specification(J=30.0462678..., C=0.1210508..., h=269.2737594..., s=0.0199093..., Q=22.2097654..., M=0.1238964..., H=None, HC=None)
Bases: colour.appearance.atd95.ATD95_Specification
Defines the ATD (1995) colour vision model specification.
This specification has field names consistent with the remaining colour appearance models in colour.appearance but diverge from Fairchild (2013) reference.
Notes
| Parameters: |
|
|---|
Computes the ATD (1995) colour vision model correlates.
| Parameters: |
|
|---|---|
| Returns: | ATD (1995) colour vision model specification. |
| Return type: | ATD95_Specification |
Warning
The input domain of that definition is non standard!
Notes
Examples
>>> XYZ = np.array([19.01, 20.00, 21.78])
>>> XYZ_0 = np.array([95.05, 100.00, 108.88])
>>> Y_0 = 318.31
>>> k_1 = 0.0
>>> k_2 = 50.0
>>> XYZ_to_ATD95(XYZ, XYZ_0, Y_0, k_1, k_2)
ATD95_Specification(h=1.9089869..., C=1.2064060..., Q=0.1814003..., A_1=0.1787931... T_1=0.0286942..., D_1=0.0107584..., A_2=0.0192182..., T_2=0.0205377..., D_2=0.0107584...)
Bases: colour.appearance.ciecam02.CIECAM02_InductionFactors
CIECAM02 colour appearance model induction factors.
| Parameters: |
|
|---|
Bases: colour.appearance.ciecam02.CIECAM02_Specification
Defines the CIECAM02 colour appearance model specification.
| Parameters: |
|
|---|
Computes the CIECAM02 colour appearance model correlates from given CIE XYZ tristimulus values.
This is the forward implementation.
| Parameters: |
|
|---|---|
| Returns: | CIECAM02 colour appearance model specification. |
| Return type: | CIECAM02_Specification |
Warning
The input domain of that definition is non standard!
Notes
Examples
>>> XYZ = np.array([19.01, 20.00, 21.78])
>>> XYZ_w = np.array([95.05, 100.00, 108.88])
>>> L_A = 318.31
>>> Y_b = 20.0
>>> surround = CIECAM02_VIEWING_CONDITIONS['Average']
>>> XYZ_to_CIECAM02(XYZ, XYZ_w, L_A, Y_b, surround)
CIECAM02_Specification(J=41.7310911..., C=0.1047077..., h=219.0484326..., s=2.3603053..., Q=195.3713259..., M=0.1088421..., H=array(278.0607358...), HC=None)
Converts CIECAM02 specification to CIE XYZ tristimulus values.
This is the reverse implementation.
| Parameters: |
|
|---|---|
| Returns: | XYZ – CIE XYZ tristimulus values. |
| Return type: | ndarray |
Warning
The output domain of that definition is non standard!
Notes
Examples
>>> J = 41.731091132513917
>>> C = 0.1047077571711053
>>> h = 219.04843265827190
>>> XYZ_w = np.array([95.05, 100.00, 108.88])
>>> L_A = 318.31
>>> Y_b = 20.0
>>> CIECAM02_to_XYZ(J, C, h, XYZ_w, L_A, Y_b)
array([ 19.01..., 20... , 21.78...])
Bases: colour.appearance.llab.LLAB_Specification
Defines the LLAB(l:c) colour appearance model specification.
This specification has field names consistent with the remaining colour appearance models in colour.appearance but diverge from Fairchild (2013) reference.
| Parameters: |
|
|---|
Computes the LLAB(l:c) colour appearance model correlates.
| Parameters: |
|
|---|---|
| Returns: | LLAB(l:c) colour appearance model specification. |
| Return type: | LLAB_Specification |
Warning
The output domain of that definition is non standard!
Notes
Examples
>>> XYZ = np.array([19.01, 20.00, 21.78])
>>> XYZ_0 = np.array([95.05, 100.00, 108.88])
>>> Y_b = 20.0
>>> L = 318.31
>>> surround = LLAB_VIEWING_CONDITIONS['ref_average_4_minus']
>>> XYZ_to_LLAB(XYZ, XYZ_0, Y_b, L, surround)
LLAB_Specification(J=37.3668650..., C=0.0089496..., h=270.0000000..., s=0.0002395..., M=0.0190185..., HC=None, a=1.4742890..., b=-0.0190185...)
Bases: colour.appearance.nayatani95.Nayatani95_Specification
Defines the Nayatani (1995) colour appearance model specification.
This specification has field names consistent with the remaining colour appearance models in colour.appearance but diverge from Fairchild (2013) reference.
| Parameters: |
|
|---|
Computes the Nayatani (1995) colour appearance model correlates.
| Parameters: |
|
|---|---|
| Returns: | Nayatani (1995) colour appearance model specification. |
| Return type: | Nayatani95_Specification |
Warning
The input domain of that definition is non standard!
Notes
Examples
>>> XYZ = np.array([19.01, 20.00, 21.78])
>>> XYZ_n = np.array([95.05, 100.00, 108.88])
>>> Y_o = 20.0
>>> E_o = 5000.0
>>> E_or = 1000.0
>>> XYZ_to_Nayatani95(XYZ, XYZ_n, Y_o, E_o, E_or)
Nayatani95_Specification(Lstar_P=49.9998829..., C=0.0133550..., h=257.5232268..., s=0.0133550..., Q=62.6266734..., M=0.0167262..., H=None, HC=None, Lstar_N=50.0039154...)
Bases: colour.appearance.rlab.RLAB_Specification
Defines the RLAB colour appearance model specification.
This specification has field names consistent with the remaining colour appearance models in colour.appearance but diverge from Fairchild (2013) reference.
| Parameters: |
|
|---|
Computes the RLAB model color appearance correlates.
| Parameters: |
|
|---|---|
| Returns: | RLAB colour appearance model specification. |
| Return type: | RLAB_Specification |
Warning
The input domain of that definition is non standard!
Notes
Examples
>>> XYZ = np.array([19.01, 20.00, 21.78])
>>> XYZ_n = np.array([109.85, 100, 35.58])
>>> Y_n = 31.83
>>> sigma = RLAB_VIEWING_CONDITIONS['Average']
>>> D = RLAB_D_FACTOR['Hard Copy Images']
>>> XYZ_to_RLAB(XYZ, XYZ_n, Y_n, sigma, D)
RLAB_Specification(J=49.8347069..., C=54.8700585..., h=286.4860208..., s=1.1010410..., HC=None, a=15.5711021..., b=-52.6142956...)